Al-Farabi Kazakh National University Faculty of Physics and Technology Department of Theoretical and Nuclear Physics

EDUCATIONAL-METHODICAL COMPLEX OF DISCIPLINE

ACST 7303 «Additional chapters of scattering theory»

Specialty "6D060500 – Nuclear Physics" Educational program on specialty "6D060500 – Nuclear Physics"

> Course – 1 Semester – 1 Number of credits – 3

> > Almaty 2018

Educational-methodical complex of the discipline is made by <u>Takibayev N.Zh.</u> , <u>d.s.pm.</u> , <u>academic of NAS RK</u> , <u>professor lecturer</u> (name, surname, scientific degree, academic rank)						
Based on the working curriculum on the specialty "6D060500 – Nuclear Physics"						
Considered and recommended at the meeting of the department Theoretical and Nuclear Physics						
from «28_ »08 2018 year, protocol № 1						
Head of department Abishev M.E. (Signature)						
Recommended by methodical bureau of the faculty						
«31»08 2018 year, protocol № 1						
Chairman of the method bureau of the faculty (Signature) Gabdullina A.T.						

Syllabus

on discipline (ACST 7303) "Additional chapters of scattering theory"

for specialty "6D060500 - Nuclear Physics" Autumn semester, 2018-2019 academic year,

Course 1

Academic course information

Discipline's	Discipline's	Type	Type No. of he		ek	Number of	ECTS
code	title		Lect.	Pract.	Lab.	credits	LC13
ACST 7303	Additional chapters of scattering theory	Elective	1	2	0	3	5
Lecturer		nyev N.Zh., d.s.pm., academic S RK, professor l: takibayev@gmail.com		nic Office	hours	Scheduled	
e-mail				-			
Telephone number	Telephone: 0396			04- Audite	ory	31	19

The training course "Additional chapters of scattering theory" is an elective				
component in educational program of doctoral student on specialty "6D060500				
- Nuclear Physics"				
The aim of the course: learning the modern physics of atomic nuclei and				
quantum mechanics for systems consisting of few-particles and clusters. As a				
result of the discipline, the student will be able to:				
 describe acquired knowledge (specifically) and it's understanding; 				
2. interpret an understanding of the overall structure of the study field and the relations between its elements (specifically);				
generalize new knowledge in the context of basic knowledge, interpret its contents;				
4. create educational and social interaction and cooperation in the group;				
5. explain the solution of the problem, its importance;				
6. classify criticism and to criticize;				
7. decide to work in a team;				
8. combine the role of taken course in the implementation of individual				
learning paths. The system of descriptor verbs must be used during the				
formation of competences;				
9. design active and interactive methods which are recommended to ensure deeper understanding and learning of educational material				
10. achieve learning outcomes of the course (individual researches, group				
projects, case studies and their methods).				
Mathematical analysis, the theory of functions of complex variables,				
differential equations, mathematical physics, statistical physics, physics of				
elementaryparticles.				
Taken knowledge will be used in research work.				
Literatures (with an indication of the authors and data output), the				

resources	availability(number), software and consumables with info	rmation about where				
	you can get them.					
	Lectures of the European school on theoretical methods for electron and					
	positron induced chemistry, Prague, Feb. 2005					
	2. E. Koelink, Lectures on scattering theory, Delft the N	etherlands 200				
	3. H.Friedrich, Scattering Theory, Fachbereich Physik	Γ 30aTU München				
	Garching Germany, 2015					
	4. John R. Taylor Scattering Theory: The Quantum The	ory of Nonrelativistic				
	Collisions, 512 pages, Dover Publications, May 26, 20 5. Ta-you Wu, Takashi Ohmura, Oventum Theory of Sci	006				
	Takasii Oililula, Quantum Theory of Sca	attering, 528				
	pages. Dover Publications, July 19, 2011 6. D.S. Sivia, Elementary Scattering Theory: For X-ray a	and Neutron Users 216				
	pages, Oxford University Press: 1 edition, January 29,	2011				
	7. Roger G. Newton, Scattering Theory of Waves and Pa	articles: Second Edition,				
	768 pages. Dover Publications; Second edition, June 1	9, 2013				
	8. R.Blumenhagen, D.Lüst, S.Theisen, Basic Concepts of	f String Theory, 784				
Academic	pages, Springer; 2013 edition, October 4, 2012 Academic Behavior Rules:					
policy of the	2 Walter Landson Company (1997)					
course in the	Compulsory attendance in the classroom, the impermissibility of late attendance.					
context of	Without advance notice of absence and undue tardiness to the teacher is estimated					
university	at 0 points. Academic values:					
moral and	20					
ethical values	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge					
omear varaes	control, and disrespectful attitude towards teachers. (The code of KazNU Student's honor)					
Evaluation and	Criteria-based evaluation:					
attestation		intona (vanification of				
policy	Assessment of learning outcomes in correlation withdescriptors (verification of					
poncy	competence formation during midterm control andexaminations). Summative evaluation:					
	evaluation of the presence and activity of the work in the classroom; assessment of the assignment, independent work of students, (project/casestudy/ program/) The formula for calculating the final grade.					
	Final grade for the discipline = $\frac{IC1 + IC2}{2} \cdot 0.6 + 0.1MT + 0.3FC$					
	Below are the minimum estimates in percentage terms:					
	95% - 100%: A 90% - 94%: A-	85 % - 89%: B				
	80% - 84%: B 75% - 79%: B-	70% - 74%: C+				
	65% - 69%: C 60% - 64%: C-	55% - 59%: D+				
	50% - 54%: D- 0% -49%: F					

Calendar (schedule) the implementation of the course content:

Wee	Topic title (lectures, practical classes, Independent work of	Number	Maximum			
ks	students)	of hours	score			
Module 1						
1	Lecture-1 (L-1). Formulation of scattering theory in terms of	1	-			
	representation theory					
	Seminar -1 (S-1). Type of scattering matrix	2	5			

2	L-2. The discrete spectrum. The virial theorem	1	-
	S-2. Same particles and statistical physics	2	5
3	L-3. Continuous spectrum	1	-
	S-3The scattering around it does	2	5
	S-3The scattering operator in the continuous case DSWT 1 Accious and a lateral formula to the scattering operator in the continuous case	1	20
	DSWT 1.Assignment submissionNo 1: Representation theory (prepare the report)	•	
4		1	-
7	L-4. Analytic properties of the wave function	2	5
	S-4. S-matrix, dispersion relations. Module 2	_	
_		1	-
5	L-5.Spectral theory	2	5
	S-5. The Green's function and perturbation theory	1	20
	DSWT 2.Assignment submission № 2:The operators	•	
	associated with the scattering matrix (prepare the		
	presentation)	1	-
6	L6. Applications of spectral theory	2	5
	S6. Operator algebra. The time Green's function	1	-
7	L7. Translational representation for the solution of the wave	- 1	
	equation in free space	2	5
	S7. The wave function in the semiclassical approximation	1	25
	DSWT 3. Assignment submission № 3: Translational		
	representation for the solution of the wave equation in free		
	space (in oral form)		35+65=100
	1 st Intermediate Control (IC1)		100
8	Midterm (MT)	1	-
	L-8.Quantum oscillator under the influence of an external		
	force Company oscillator	2	5
	S-8.Parametric excitation of a quantum oscillator		
	Module 3	1	-
9	L-9. The scattering matrix	2	5
	S-9. Heisenberg representation and canonical	2	
	transformations	1	10
	DSWT4. Assignment submission № 4:Generalization of the	•	
	normalization and perturbation theory for quasi stationary		
	states (prepare the presentation)	1	-
0	1. 10. Wave function of a multichannel system	2	5
	S-10. Section. Unitarity and symmetry of the S matrix.	$\frac{2}{1}$	-
1	L-11. S matrix and its relation to the R-matrix		5
	C. 11 Threshold phenomena.	2	10
	DOWNES Assignment submission No 5: Energy dependence	1	10
	-64kg goottering cross section near the threshold of feactions.		
	Generalization to the case of particles with spin. (prepare the		
	report)		
2	L 12 The Faddeev equations	1	-
	S-12. General formulas for scattering cross sections	2	5

	Total		100
	Exam		100
	2 nd Intermediate Control (IC2)		35+65=100
	DSWT 7. Assignment submission№ 7: Properties of highly excited levels in the Coulomb field. (in oral form)	1	25
	S-15.Multiplication in the case of several channels	2	5
15	L-15.Quasienergy of a system subjected to periodic action	1	-
	S-14.Reactions with neutrino emission	2	5
14	L-14.Theory of weak interactions	1	-
	DSWT 6. Assignment submission N ₂ 6:Asymptotics of the wave function at large distances. (prepare the presentation)	1	20
	S-13. The formula for determining the amplitudes of various processes	2	5
13	L-13. The motion of two particles in an external potential field	1	-

Lecturer	a do-	Takibayev N.Zh.
Head of the Department		Abishev M.E.
Chairman of the Faculty Methodical Bureau	Hadas	_ Gabdullina A.T.